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ABSTRACT: Chemiresistors based on metal monolayer-capped nano-
particles (MCNPs) are promising candidates for fast, inexpensive, and
portable tracing of (bio)chemical species in the gas phase. However, the
sensitivity of such sensors to humidity is problematic, limiting their reliable
and reproducible application in real-world environmental conditions. In
this work, we employed a compensation method to explore the effect of
humidity on a single MCNP chemiresistor as well as on an array of MCNP
sensors used to analyze either synthetic or real-world samples. We show
that an array of MCNP chemiresistors is able to precisely detect and
estimate subtle concentrations of (mixtures of) volatile organic compounds
(VOCs) under variable backgrounds of 2−83% relative humidity (RH)
only after humidity compensation. Humidity effects were also tested in two
clinical trials aimed at detecting prostate cancer and breast cancer through
exhaled breath analysis. Analysis of the results showed improved cancer detection capabilities as a result of RH compensation,
though less substantial than the impact of RH compensation on synthetic samples. This outcome is attributed to one − or a
combination − of the following effects: (i) the RH variance was smaller in the breath samples than that in the synthetic samples;
(ii) the VOC composition in the breath samples is less controlled than the synthetic samples; and (iii) the responses to small
polar VOCs and water are not necessarily additive in breath samples. Ultimately, the results presented here could assist the
development of a cost-effective, low-power method for widespread detection of VOCs in real-world applications, such as breath
analysis, as well as for environmental, security, and food applications.
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■ INTRODUCTION
Chemiresistors based on metal monolayer-capped nano-
particles (MCNPs) hold promising potential for tracing volatile
organic compounds (VOCs) in a wide variety of applications.
This could be attributed to the MCNP sensors’ controllable
selectivity, high sensitivity, low detection limits, fast response
and recovery times, small size, low-output impedance, and easy
integration with standard microelectronic devices.1−4

Interaction of MCNP films with VOCs can have two
counteracting effects: (i) film swelling/aggregation, which may
increase/decrease the resistivity due to an increase in the
interparticle tunnel distance; and/or (ii) an increase in the
permittivity of the organic matrix around the metal cores that
may decrease the resistivity because of a decrease in the acti-
vation energy and due to a reduction of the potential barrier
height between the metal cores, which in turn decreases
the tunneling decay constant.1−3,5,6 However, the interaction of
MCNP-based sensors with VOCs in real-world applications is
hindered by the high and/or nonconstant humidity levels
present in the environment and/or detected sample.7−9 For
example, a method for screening, diagnosis, and monitoring of
cancer relies on the analysis of breath samples.10,11 Yet the high
relative humidity (RH) in the breath samples (>80% RH −
equivalent to >25 000 ppm of water vapor at 1 atm and 25 °C)

usually screens the cancer-related VOCs,12−14 limiting the
accuracy of the analysis.10,15,16 This limitation is made more
serious if the MCNP-based sensor drifts over time, due to, for
example, aging, and/or incomplete release of absorbed chemical
species.17 Dehumidification and/or VOC preconcentration
techniques can, in principle, be used to minimize the humidity
effect.16,18,19 However, these methods are costly, complex, and
lose important VOCs during the extraction process of the com-
pounds from the sample. Moreover, these techniques do not
compensate for the sensor drift and the response to the remaining
water vapor.
Synthesis of MCNPs with low sensitivity to humidity and

increased VOC/humidity sensitivity ratio has been reported9,20,21

(see also refs 16 and 22−25 for related work on other nano-
material types). Garg et al. have shown that the long-term drift
of chemiresistors based on Au MCNPs can be reduced by
capping the nanoparticles with trithiols instead of monothiols,
which presumably slows down the oxidation of the surface
thiolates.26 Nevertheless, this approach was demonstrated only
with toluene. Guo et al.8 have found short-term drift and signal
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distortion (especially at high RHs) phenomena to be related to
residual ionic impurities, originating from the phase-transfer
reagent tetraoctylammonium bromide (TOAB). These effects
were eliminated by introducing a purification process after nano-
particle synthesis, to extract the ionic impurities, giving stable
responses to VOCs and well-defined signals to water vapor from
low to high RHs (80%). The well-defined signals to water vapor
are particularly important as they enable VOC sensing in humid
environments and make humidity compensation potentially
possible.
Low sensitivity to water was reported for Au or Pt MCNPs

deposited using the layer-by-layer technique.9 These films
exhibited water sensitivity on the order of 2−6 × 10−5 percent
response per ppm change of water vapor (%Res./ppmw).

9

Dovgolevsky et al.20 demonstrated that controlling the shape of
Pt MCNPs to form cubic instead of spherical cores increases
their sensitivity to VOCs by up to ten times. The reported
sensitivity to water was on the order of 1−6 × 10−4 %Res./
ppmw, while the sensitivity to a variety of VOCs was 2−400
times higher and the corresponding VOC/humidity sen-
sitivity ratios ranged up to 1.3% RH/ppmvoc.

21 These results
indicate that even sensors with sensitivities 400 times higher to
VOCs than to water could be subject to significant response
variations due to small humidity fluctuations of ∼1% RH
when sensing low VOC concentrations (ppms or lower). Con-
sequently, it is important to understand and quantify the
potential humidity effects on VOC sensing using MCNP
chemiresistors.
In this study, we investigate the effect of humidity on MCNP

chemiresistors, both in lab applications and in real-world appli-
cations. We do so by exploring the efficiency of compensating
the humidity effect: (i) in synthetic air/VOC/water mixtures
during investigations carried out over short (1 week) and
long (4 months) periods of time, and (ii) in real-world breath
samples collected from patients with prostate cancer (PC) or
breast cancer (BC) compared to healthy controls. We show
that the efficiency of humidity compensation in synthetic
samples is better than in real-world samples. We attribute this
to the high RH variance and controlled VOC composition
generated in the synthetic samples as well as to the reported
additive nature of the MCNP sensor responses to humidity
and the VOCs studied.

■ EXPERIMENTAL SECTION
Fabrication of Sensors. Monolayer-capped nanoparticles

(MCNPs) consisting of 3−5 nm Au nanoparticles and dodecanethiol,
octadecanethiol, 2-nitro-4-(trifluoromethyl)benzenethiol (NTFB),
2-mercaptobenzoxazole (MBA), 4-methoxy-α-toluenethiol (MTT),
hexanthiol, tert-dodecanethiol, 2-ethylhexanethiol, 2-mercaptobenzyl
alcohol, 3-methyl-1-butanethiol, butanethiol, or octadecylamine ligands
were synthesized using a two-step seed-mediated growth method.27

MCNP films were drop casted on circular interdigitated electrodes
(5 mm diameter and 25 μm electrode width and spacing) fabricated by
evaporating 50 nm of Ti followed by 350 nm of Au on Si wafers with a
thermal oxide capping layer of 0.5 μm using conventional micro-
fabrication processes. The MCNP sensors were left in a vacuum oven
at 1 Torr and 50 °C overnight (or longer, until their resistance at
ambient conditions stabilized). All organic reagents and chemicals
employed in the MCNP synthesis were analytical grade materials
obtained from Sigma-Aldrich, Israel.
Sensor Characterization in Laboratory Environment. The

MCNP chemiresistors were exposed to various mixtures of water
vapor (produced by vaporizing 18.2 MΩ cm DI water) and n-octane,
as a representative example of a nonpolar VOC, 2-ethylhexanol (EH),
as a representative example of a polar VOC, or 1,2,4-trimethylbenzene

(TMB), as a representative example for an aromatic polar VOC. The
three VOCs used in the current study (>98% purity, Sigma-Aldrich,
Israel), resemble part of the VOCs appearing in exhaled breath
samples. The mixtures were produced from a commercial dynamic
liquid injection dilution (DLID) system (Umwelttechnik MCZ,
Germany). Purified dry air (1.6−2.2% RH; <0.4 ppm VOC content)
from a commercial zero-air system (NGA 600−25 MD, Umwelttech-
nik MCZ, Germany) was used as a carrier gas. The DLID system mixes
a constant flow (100 ± 1 cm3/min) of purified air with a constant mass
flow source of vaporized VOC(s). The air/VOC mixture exiting the
DLID system is then diluted with two flow controlled dilution air
streams: (i) dry air obtained directly from the zero-air system, and (ii)
humidified air generated by the system’s humidifier module. The total
output VOC concentration was determined by controlling the mass flow
rate of the vaporized VOC(s) and the total volumetric air flow rate. The
DLID system output VOC(s) concentration and RH were monitored by
a commercial photoionization detector (PID; ppbRAE 3000) and a
commercial RH sensor (Hygrosens), respectively. The sensing experi-
ments were carried out by monitoring the MCNP sensors and
environmental sensors (RH, temperature and pressure sensors), placed
inside a 330 cm3 stainless steel chamber, while exposed to the (mixtures
of) compounds generated by the DLID system. A Keithley data logger
device (model 2701 DMM) controlled by a custom Labview program
was used to sequentially acquire resistance readings from the sensor
array and voltage readings from the environmental sensors. Constant
currents in the range of 0.7−1 × 104 μA were used for resistance
measurements. A typical exposure cycle involved a 5 min vacuum (<50
mtorr) baseline step, followed by 5 min exposure to the test vapor under
stagnant conditions, and ended with another 5 min vacuum step,
whereas each successive acquisition cycle of the entire sensor array was
completed in <4 s.

Clinical Samples. Breath samples were collected from patients
having prostate cancer (PC), breast cancer (BC), and healthy controls
in two separate clinical trials. The PC trial involved 16 breath samples
from 9 diagnosed PC patients and 16 breath samples from 10 healthy
subjects, aged 44−73. The breath samples of this trial were collected in
the Oncology Division of the Rambam Health Care Campus (Haifa,
Israel). The BC trial involved 20 breath samples from 10 diagnosed
BC patients and 21 breath samples from 11 healthy subjects, aged 33−
68. The breath samples of this trial were collected in the Breast
Imaging Division of the Rambam Health Care Campus (Haifa, Israel).

The clinical characteristics of the subject groups are listed in Table 1.
Due to the particular characteristics of these two diseases, the PC
group included only males, whereas the BC group included only
females. In any case, the output of the MCNP sensor array has not
shown any statistical differences between the male and female
populations of the two control groups (not shown) and between
the upper and lower age spans within each of the four groups, in
agreement with previous observations.28,29

Alveolar breath samples were collected into 750 cm3 Mylar breath
collection bags using a specially designed custom breath collection
device, as described elsewhere.28,30 The volunteers did not ingest
alcohol for at least 12 h previous to their alveolar breath collection.
Breath samples from the PC patients and the BC patients were

Table 1. Clinical Characteristics of the PC, BC, and Control
Population Groups

PC
controls
(PC)a BC

controls
(BC)a

subjects (n) 9 10 10 11
age (mean/1SD, years) 66/5 57/9 50/11 58/8
sex (male/female) 9/0 5/5 0/10 6/5
smokers 1 2 1 2
aControl samples for PC and BC clinical trials were collected during
different periods, therefore they are not combined in the table.
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collected directly after the diagnosis and before any treatment. Three
successive breath bags were collected from each subject; two were
analyzed using the MCNP sensor array described in the “Fabrication
of Sensors” part of the Experimental Section, and the third using a gas
chromatography mass spectrometry (GC-MS) system via a solid-phase
microextraction (SPME) fiber, as described elsewhere.28 The sensor
array measurements were performed following the same procedure
specified in the “Sensor Characterization in Laboratory Environment”
part of the Experimental Section. During the experiments, the test
chamber and the breath bags were maintained at room tempera-
ture (25 ± 3 °C). To ensure sufficient sample volume, we monitored
the in-chamber pressure during the breath sample exposures to be above
710 mmHg, with the upper margin being the barometric pressure
(∼760 mmHg).
Data Analysis. Analysis of sensing signals, extraction of response

features, and development of humidity compensation methods were
performed by Matlab (version R1010a, the MathWorks, Inc.) and
JMP software (version 8.0, SAS Institute Inc.). Principal component
analysis (PCA) was used to reduce data dimensionality and allow a
better visualization of the multidimensional data sets. PCA defines new
orthogonal axes, called principal components (PCs), which are linear
combinations of the original data that capture the most variance from
the whole data set, so that the multidimensional data can be repre-
sented in two or three dimensions only. The largest response variance
can be found along PC1, with decreasing magnitudes of variance found
along PC2, PC3 etc.28 Discriminant factor analysis (DFA), which is a
supervised linear method, was used to evaluate the effect of humidity
compensation on the discriminative potential of the tested sensor
arrays. The accuracy of VOC classification is calculated employing a
leave-one-out cross-validation method. Given n measurements, DFA
is computed n times using n-1 training vectors. The vector left out
during the training phase (validation vector that is unseen by the DFA
method during the training phase, thus completely new for the DFA
model built) is then projected onto the DFA model built, which
produces a classification result. The classification accuracy is estimated as
the averaged possible performance over the n tests. The Partial Least
Squares (PLS) method was used to estimate the effects of the humidity
compensation on the correctness of VOC concentration estimation.31

■ RESULTS
Humidity Effect on the Sensing Characteristics of

VOCs. Figure 1 shows normalized resistance responses (ΔR/Rb,
where ΔR is the resistance change after exposure to the test
sample, and Rb is the baseline resistance before exposure) of
a dodecanethiol-Au MCNP sensor exposed to air with various
concentrations of TMB and with a RH of: (a) 2.1 ± 0.4%
and (b) 82.6 ± 1.3% (equivalent to ∼625 and ∼25 000 ppm,
respectively, of water vapor at 1 atm and 25 °C). As shown

in the figure, the sensors exhibited increasing signals upon
exposure to increasing TMB concentrations, either at low RH
or at high RH levels. In the case of constant RH, the high
signal-to-noise ratio characterizing the response signals gives a
TMB detection limit of 350 ppb. Similar behavior was observed
for other VOCs as well as for the other MCNP sensors with
even lower detection limits down to 100 ppb.
Figure 2 shows ΔR/Rb of a typical dodecanethiol-Au MCNP

sensor exposed to air with (a) different RH levels and (b) dif-
ferent TMB concentrations under constant RH levels. As seen
in the figure, the ΔR/Rb exhibits a linear fit with the TMB
concentration (at the four different water levels) and slightly
nonlinear fit with the RH concentration, characterized by an
inflection point at 50% RH. The latter is a typical behavior of
vapor adsorption on a porous film (classified as type II).32 Also,
the slopes of the four TMB curves were independent of the RH
level, indicating that the sensitivity to the VOC is not affected
by the background humidity. According to the slopes in panels
a and b in Figure 2, the sensor is ∼330 times more sensitive to
TMB than to water, with the corresponding TMB/humidity
sensitivity ratio being 1%RH/ppmTMB. This means that the
ΔR/Rb response to typical small (∼3% RH) fluctuations in the
humidity background is at the order of the response to low
TMB concentrations (e.g., 3 ppm). Further examination of Figure
2 shows that the sensing responses were additive, i.e., the sensing
response to a combination of two (or more) compounds is equal
to the sum of their separate responses.33 The rest of the MCNP
sensors under analysis also showed similar characteristics for
different VOCs (not shown), which should make humidity com-
pensation potentially possible and significant.
Figure 3 shows the RH sensitivity over a period of 18 weeks

for three identically fabricated NTFB-Au MCNP sensors. The
RH sensitivity was estimated by exposing the sensors to two
subsequent humidified air samples (61 ± 4% RH and 80 ± 4%
RH), followed by obtaining the slope of the linear correlation
between the two ΔR/Rb signals and the measured RHs. It can
be clearly seen that the sensitivity of the chemiresistors to RH
gradually decreases over time, until it reaches a plateau at ca.
40 days. The inset in Figure 3 shows the resistance of the three
sensors upon exposure to the humidified air samples, at day
1 and day 122. As seen in the inset, at day 1, the sensors
exhibited different baseline resistances (7.4−8.9 MΩ) and
sudden resistance abruptions (about 2−3 min duration) upon
exposure to humid air. Nevertheless, the more these sensors

Figure 1. Dodecanethiol-Au MCNP chemiresistor response to increasing concentrations of TMB, with background RHs of (a) 2.1 ± 0.4% and
(b) 82.6 ± 1.3%. TMB concentrations measured are depicted in the plot legends.
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were used, the higher the resistance uniformity (7.1−7.2 MΩ at
day 122), the weaker the response to RH, and the shorter the
abruption time (about 1−2 min duration). Slight differences
could be observed after this period, but they were less
pronounced. Similar findings, though less substantial, were also
observed for other organic capping layers, such as decanethiol
and octadecanethiol.
Humidity Compensation in Mixtures of Humidity and

VOCs. On the basis of the observations presented in the
“Humidity Effect on the Sensing Characteristics of VOCs” part
of the Results section, an approach of humidity compensation
was tested as a mean for reducing the effects of highly variable
humidity conditions on VOC sensing. The humidity compen-
sation method employed is based on sensor RH calibration
with an in-chamber humidity sensor, followed by postfeature
extraction humidity compensation (additive compensation of
the estimated sensor response to the measured humidity). In
cases of short usage periods, for which the sensor’s drift was
<10%, a “short-term” compensation procedure was used. In
cases of long usage periods, for which the sensor’s drift was
>10%, a “long-term” compensation procedure, which takes into
account both humidity and sensitivity drift effects (see Figure 3),
was implemented.

Figure 4 shows responses of the dodecanethiol-Au MCNP
sensor over a period of 1 week (<5% drift) to TMB, EH, and n-
octane at different concentrations, and to a mixture of three
VOCs (0.85:0.96:1.00 TMB:EH:n-octane) with a RH of 2−83%.
As seen in the figure, for a specific VOC concentration, the
uncompensated sensing signals (closed shapes) showed varying
responses at different RH levels. The higher the RH level, the
higher the uncompensated sensing signal. For each specific VOC
concentration, applying humidity compensation counteracted the
relative effect of humidity as well as the related variances from
sample to sample. This is well-expressed by the (blue) open
circles presented in Figure 4, where signals at a specific VOC
concentration are located at the same place in the figure. To
evaluate the power for predicting VOC concentration following
humidity compensation, we calculated the square of the cor-
relation coefficient (R2) between real and estimated VOC con-
centrations as a measure of how well the PLS model is likely to
predict future samples (see Table 2). As expected, the PLS
model showed very low R2 values for the uncompensated signals
and high values when applying the humidity compensation pro-
cedure, regardless of the large RH variance between the samples.
The effect of humidity variations was further examined by

applying the short-term humidity compensation on an array of
two dodecanethiol-Au MCNP sensors, two octadecanethiol-Au
MCNP sensors, and one MTT-Au MCNP sensor. As seen in
Figure 5, PCA analysis of the uncompensated (ΔR/Rb) features
has not shown any discrimination between the clusters of the
different compounds. On the other hand, similar analysis
applied to the compensated features showed a good separation
between the various samples while showing clear concentration
trajectories of the different mixtures. Figure 5b shows at the plot’s
center the compensated PCA signal of the lowest VOC
concentration examined in this study. Gradual movement from
the plot’s center to the periphery indicates a gradual increase of
the VOC concentration. In this way, the points closest to the
graph boundaries represent the highest VOC concentration
examined in this study. The classification accuracy, calculated from
DFA analysis employing leave-one-out cross-validation (see “Data
Analysis” part of the Experimental Section), further confirmed the
significant effect of RH compensation (see Table 3).
The effect of long-term humidity compensation was exam-

ined using an array of dodecanethiol-Au MCNP, NTFB-Au

Figure 3. Correlation slopes (RH sensitivity) versus time for three
identically fabricated NTFB-Au MCNP sensors. The inset shows the
resistance of the three sensors upon exposure to the humidified air
samples, at day 1 and day 122. The error bars in the figure are at the
length of the symbols.

Figure 2. Normalized resistance change of the dodecanethiol-Au MCNP sensor exposed to increasing concentrations of (a) water vapor and
(b) TMB with various constant RH levels (depicted in the plot's legend). The response to water was obtained from 21 exposures (seven RH levels
with three repetitions). The response to TMB was obtained from 16 exposures (four RH levels with four increasing TMB concentrations). The error
bars in the figure are at the length of the symbols.
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MCNP, MBA-Au MCNP, MTT-Au MCNP (MTT-Au NP)
sensors, exposed recurrently over a period of 18 weeks to a
sequence of three different samples: air with 40 ± 8 ppm EH
and two humidified air samples with moderate and high water
vapor contents (∼61 and ∼80% RH, respectively). The RH
mean and standard deviation of the three air sample classes
and the combined class of humidified air samples are listed in
Table 4. As seen in Figure 6a, the PCA plot extracted from
the uncompensated signals showed that the EH air mixtures,
as well as the humidified air samples, are substantially scattered
and overlap one another, making air with no EH and air with
∼40 ppm EH practically indistinguishable. In contrast, the
PCA plots of the compensated responses yielded well-defined
and well-separated clusters of EH in the PC1 axis (accounting
for 89 and 95% of the data variance for the short-term and
long-term compensated signals, respectively); see Figure 6b,c.

Table 4 summarizes a statistical comparison between the
three data sets (uncompensated, short-term and long-term
compensated signals). Evaluation of the table shows that the
long-term RH compensation is superior to the short-term
method, as expressed by reduced ratios between the PC1 stan-
dard deviation and the PC1 standard deviation of the uncom-
pensated data, for all classes. In addition, the separation between
the PC1 means of the 40 ppm EH samples and humidified air
samples were further increased by implementation of the
long-term method. It is also evident that the larger the
variance in humidity, the more substantial the reduction in
scattering as a result of humidity compensation. This is well
represented by the decrease in the PC1 standard deviation
ratio with increasing RH standard deviation. On the other
hand, one can expect that the larger the inherent class variance
unrelated to humidity (e.g., VOC composition/concentration
variance), the less substantial the scattering reduction fol-
lowing humidity compensation. Therefore, the relatively high
PC1 standard deviation ratios of the 40 ppm EH class can
be explained by both the low RH standard deviation (±2.8%)
and the variance in EH concentration (standard deviation of
±8 ppm).

Humidity Compensation in Breath Analysis of Cancer
States. The RH compensation method was applied in a
clinical trial aiming for the detection of prostate cancer (PC)
and breast cancer (BC), for which we have previously iden-
tified tentative volatile biomarkers in exhaled breath using a
GC-MS technique − see ref 28 for more details on the VOCs

Figure 4. Uncompensated (closed shapes) and compensated (blue open circles) responses (ΔR/Rb%) of a dodecanethiol-Au MCNP sensor to
various concentrations of (a) TMB, (b) EH, (c) n-octane, and (d) a mixture of the three VOCs (molar ratio of 0.85 TMB:0.96 EH:1.00 n-octane)
with a RH of 2−83%. The mixture concentration in the x axis of plot d is the total hydrocarbon concentration of the mixture. The error bars in the
figures are at the length of the symbols.

Table 2. Correlation Coefficient (R2) between Real and
Predicted VOC Concentrations of Each VOC Experiment
Presented in Figure 4, as Obtained from PLS Analysis of the
Uncompensated and Compensated Responses of the
Dodecanethiol-Au MCNP Sensor

R2 between real and predicted VOC concentrations

1,2,4-
trimethylbenzene

2-
ethylhexanol

n-
octane mixture

uncompensated 0.210 0.662 0.026 0.459
compensated 0.963 0.995 0.912 0.970
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characterizing each cancer state. The breath VOCs are gene-
rated by the cellular biochemical processes of the body or are
absorbed from the environment through ingestion, inhalation,
or through skin contact. These processes may cause specific
VOCs to be emitted into the blood and, subsequently, into the

alveolar exhaled breath through exchange via the lungs, gene-
rating VOC breath patterns that represent clinical states.
An array of hexanthiol-Au MCNP, tert-dodecanethiol-Au

MCNP, 2-ethylhexanethiol-Au MCNP, (2-mercaptobenzyl alcohol)-
Au MCNP, 3-methyl-1-butanethiol-Au MCNP, butanethiol-Au

Figure 5. PCA of (a) RH uncompensated and (b) RH compensated signals for an array of two dodecanethiol-Au MCNP sensors, two
octadecanethiol-Au MCNP sensors, and one 4-methoxy-α-toluenethiol-Au MCNP sensor, exposed to air with: water vapor (orange circles); binary
mixtures of water vapor and EH (blue circles); water vapor and TMB (red circles); water vapor and octane (purple circles); quadruplet mixtures of
water vapor, EH, TMB, and n-octane (green circles). The water vapor concentration was varied systematically between 2.1 ± 0.4% and 82.6 ± 1.3%
RH, whereas the VOC concentration of the binary air mixtures was varied systematically between approximately 10 and 110 ppm, and the total VOC
concentration of the quadruplet air mixtures was varied systematically between 25 and 190 ppm. For panel b, gradual movement from the plot’s
center to the periphery indicates a gradual increase in the VOC concentration.

Table 3. Discrimination Accuracy for the Different Air Mixtures, as Obtained from DFA of PC1, PC2, and PC3 of the
Uncompensated and Compensated Responses Presented in Figure 5

discrimination accuracy of DFA analysis (%)

1,2,4-trimethylbenzene 2-ethylhexanol n-octane mixture water total accuracy

uncompensated 58 83 42 67 67 64
compensated 67 92 75 83 90 83

Table 4. Statistical Data for the Different Air Sample Classes of the Long Term Sensing Experiment

PC1 standard deviation ratioa

mixture class %RH mean %RH std dev uncompensated compensated (short) compensated (long)

40 ppm EH 6.8 2.8 1 0.96 0.69
61% RH 61.3 4.3 1 0.56 0.38
80% RH 79.5 4.5 1 0.43 0.28
humidified air 70.4 10.2 1 0.36 0.23
PC1 Δmeanb 1.49 4.05 4.14

aRatio between the PC1 standard deviation of a given class and the uncompensated PC1 standard deviation of the same class. bDifference between
the PC1 means of the 40 ppm EH samples and humidified air samples.

Figure 6. PCA of (a) uncompensated, (b) short-term compensated, and (c) long-term compensated responses of four Au MCNP sensors
sequentially exposed over a period of 18 weeks to air samples with 40 ± 8 ppm of EH (red closed circles) and two humidified airflows with moderate
RH (∼61%, blue closed circles) and high RH (∼80%, green closed circles). The RH mean and standard deviation of the three air sample classes and
the combined class of the two humidified air samples are listed in Table 4.
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MCNP, and octadecylamine-Au MCNP sensors was exposed to
breath samples of PC, BC, and healthy control volunteers over
a period of 4 weeks (see Table 1 for a summary of the clinical
characteristics of the tested groups). Following the exposure
procedure, the sensing signals obtained were compensated for
the RH effect, using the previously discussed approaches. The
RH mean and standard deviation of the PC breath samples, as
measured in-chamber during breath analysis, were 67 and 11%,
respectively, and for the BC trial, 73 and 8%. Figure 7 shows a
PCA representation of the sensor array breath analysis results for
the PC and BC trials. As seen in the figure, the dispersion of the
different clusters was reduced after the RH compensation,
improving the discrimination between the healthy and the cancer
groups. The classification accuracy, according to DFA analysis,
based on leave-one-out cross-validation, was also improved as a
consequence of RH compensation.34 The numbers of correct and
incorrect sample classifications are listed in the confusion matrixes
incorporated in Figure 7. From this we can extract 94% sensitivity
and 87% specificity for PC and 95% sensitivity and 95% specificity
for BC using the uncompensated responses. Applying RH
compensation showed improved classification values, expressed
by 100% sensitivity and 100% specificity for PC and 100%
sensitivity and 95% specificity for BC.

■ DISCUSSION
As presented in the “Humidity Compensation in Mixtures of
Humidity and VOCs” part of the Results section, humidity
compensation substantially improved the accuracy of VOC

concentration estimation and VOC classification in synthetic
mixtures. Nonetheless, the efficiency of humidity compensation
varied from one mixture type to another, showing the greatest
accuracy improvement for octane followed by TMB and EH.
This is probably related to the lower VOC/humidity sensitivity
ratio of the sensor array for octane. In addition, when
considering the results presented in the “Humidity Compensa-
tion in Breath Analysis of Cancer States” part of the Results
section, the humidity compensation improved the discrim-
ination between the clusters of the synthetic samples more than
that in breath samples. The reasons for this discrepancy are
explained below.
The impact of humidity compensation in breath analysis is

limited by a number of factors. First, the reduction in pattern
variance following RH compensation is smaller when the RH
variance between samples is small. This might explain the more
significant scattering reduction in the case of the synthetic
samples presented in Figure 5 and Table 3 (with RH standard
deviation of 30%), versus the breath samples (with RH stan-
dard deviation of 10%). Second, the larger the VOC variance
between samples, the less substantial the reduction due to
humidity compensation. While very good control over the
VOC content could be achieved in synthetic samples, this is
not necessarily the case in breath samples. VOC variance exists
between breath samples even when dealing with homogeneous
populations sharing similar clinical backgrounds. Generally
speaking, exhaled breath samples contain nitrogen, oxygen,
carbon dioxide, and a spectrum of thousands of VOCs that

Figure 7. PCA representations of breath analysis results for a PC trial (a) without and (b) with RH compensation, and for a BC trial (c) without and
(d) with RH compensation.
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appear in ppb levels with a total hydrocarbon composition in
the ppm level. A major part of the VOC spectrum changes from
one person to another while the rest of the VOCs could be
found in all breath samples collected from a given population or
group. As an illustrative example, a typical population of breath
samples might contain between 1000 to 3000 different VOCs
in total. However, the number of common VOCs that might
be found in the breath of all patients could range from a few
to tens of VOCs only.10,28,30 The variance of such compounds
within a breath sample population greatly varies, ranging, for
example, between 0.01−1.4 ppb for hexanal, and 0.6−1582 ppb
for formaldehyde (see ref 13) or 2−300 ppb for isoprene
and 100−3000 ppb for acetone (see ref 12). The nature of
the breath samples, therefore, implies that following humidity
compensation, the remaining VOC related signal dispersion can
even be enhanced if the responses of the MCNP sensors to
small polar VOCs and water molecules are not additive. This
could be the result of competitive adsorption due to water/
VOC chemical similarity. Breath VOCs with such characteristics,
such as 2-butanone, 1-propanol, ethanol, and acetone, were also
found in our GC-MS analysis of breath samples from the PC, BC,
and healthy control groups (see ref 12). Following these possible
limitations, the use of RH compensation as a mean of reducing
humidity related effects in breath analysis applications needs
to be further studied, with respect to the VOC types and
the concentration ranges it applies to, and verified in a larger
clinical trial.

■ SUMMARY AND CONCLUSIONS
We have studied the effect of humidity on arrays of MCNP
chemiresistors used to analyze VOCs in humid environments.
This was done by evaluating the influence of humidity compen-
sation on the VOC sensing capabilities of the sensor arrays to
synthetic air mixtures as well as to complex real-world samples.
In the case of the synthetic samples, a combination of large RH
variance, controlled VOC composition and the additive nature
of the MCNP sensor responses resulted in significant reduc-
tions in pattern dispersion following RH compensation. In the
complex case of breath analysis, the reduction in pattern disper-
sion was less significant than that of synthetic samples. This is
probably because: (i) the RH variance was smaller than that in
the synthetic samples; (ii) the VOC composition in the breath
samples is less controlled than in the synthetic samples; and
(iii) the responses to small polar VOCs and water are not
necessarily additive. In consequence, the implementation of
humidity compensation for eliminating the distorting effects of
humidity in breath analysis applications needs further study. A
study into the validity range of humidity compensation, with
respect to RH and VOC concentrations as well as temperature,
is underway and will be published elsewhere. Ultimately,
advances in this field could help in the development of a cost-
effective, low-power method for widespread detection of VOCs
in real-world applications, not only for breath analysis, but also
for environmental, security, and food applications.
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Müllen, K.; Haick, H. Adv. Mater. 2010, 22, 4317−4320.
(26) Garg, N.; Mohanty, A.; Lazarus, N.; Schultz, L.; Rozzi, T. R.;
Santhanam, S.; Weiss, L.; Snyder, J. L.; Fedder, G. K.; Jin, R.
Nanotechnology 2010, 21, 405501.
(27) Dovgolevsky, E.; Haick, H. Small 2008, 4, 2059−2066.
(28) Peng, G.; Hakim, M.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyak,
R.; Kuten, A.; Tisch, U.; Haick, H. Br. J. Cancer 2010, 103, 542−551.
(29) Hakim, M.; Billan, S.; Tisch, U.; Peng, G.; Dvrokind, I.; Marom,
O.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Br. J. Cancer 2011, 104,
1649−1655.
(30) Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza,
Y. Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Nature
Nanotechnol. 2009, 4, 669−673.
(31) Geladi, P.; Kowalski, B. R. Anal. Chim. Acta 1986, 185, 1−17.
(32) Huang, H.; Haghighat, F.; Blondeau, P. Indoor Air 2006, 16,
236−247.

ACS Applied Materials & Interfaces Research Article

dx.doi.org/10.1021/am2013695 | ACS Appl. Mater. Interfaces 2012, 4, 317−325324

mailto:hhossam@technion.ac.il


(33) Severin, E. J.; Doleman, B. J.; Lewis, N. S. Anal. Chem. 2000, 72,
658−668.
(34) To reduce the risk of overfitting only three sensors were used
for the DFA, as the test populations are relatively small and, unlike
PCA, DFA is a supervised learning method in which the data set
classes are used to achieve the best discrimination.

ACS Applied Materials & Interfaces Research Article

dx.doi.org/10.1021/am2013695 | ACS Appl. Mater. Interfaces 2012, 4, 317−325325


